If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+3X-3960=0
a = 1; b = 3; c = -3960;
Δ = b2-4ac
Δ = 32-4·1·(-3960)
Δ = 15849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15849}=\sqrt{9*1761}=\sqrt{9}*\sqrt{1761}=3\sqrt{1761}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{1761}}{2*1}=\frac{-3-3\sqrt{1761}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{1761}}{2*1}=\frac{-3+3\sqrt{1761}}{2} $
| 2x-5 + x = 37 | | -10n+12=-9n-7 | | 10+0.65x=10000+0.60=0 | | 5e-13=37+5e | | 2+5n=6-(n-8) | | 19=(x-4) | | 2x+5+5x=4+7x | | 4200+0,06x=4700+0,08x | | 7+4n=6n-5 | | (4^x)+(6^x)=9^x | | 5=2u=3u | | 420+0.06x=4700+0.08x | | 12+4p=8 | | 18n-32n+6n=130 | | 100^{5-4x}=10^{x^{2}-19x+38} | | 25n-18n+5-17=65 | | X+8=6x-1 | | 15-13n+6n+12n=75 | | 600000+15x=20x | | 19n-9n-12+17=95 | | 20+3n-23=45 | | 19n-9n-12+17=63 | | 12+10n-3-4n=63 | | x^2-16x+48=0 | | y´´+144y=0 | | 16=6-5u | | 12b-7=-3b+8 | | 0.67+0.42(x-1)+1.34=4.95 | | -18y=-24 | | 3x=2000 | | 2000=3x | | M(x)=(x-2)(x²-x-2) |